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Tensile and compressive moduli of fibres using 
a two-component beam system 

M. G. D O B B ,  M. G H A N E  
Textile Physics Laboratory, University of Leeds, U.K. 

Serious difficulties are associated with the measurement of the compressive modulus of 
fibres owing to their tendency to buckle during loading. A novel technique is described, 
based on the theory of two-component materials for determining both the tensile and 
compressive moduli of reinforcing fibres in composites. It was found, particularly with 
Kevlar 49, that the two moduli are significantly different. 

1. Introduction 
For many composite engineering applications, 
information regarding both tensile modulus and com- 
pressional modulus of reinforcing fibres is often 
required. In the case of fibres, the former can be mea- 
sured relatively easily; however, because of the very 
small diameter it is extremely difficult to measure the 
axial compressive modulus without buckling. As a re- 
sult many workers [1-3] have assumed that the tensile 
and compressive moduli are identical. However, it is 
the purpose of this paper to report on a novel tech- 
nique designed to measure both parameters. 

When a material is subjected to bending, one sec- 
tion is in tension and the other part away from the 
neutral axis is in compression. It was decided, there- 
fore, to fabricate an asymmetric composite consisting 
of fibres embedded along one side of a rod. During 
bending of the composite, the fibres could be subjected 
to either tension or compression depending  on 
whether they were above or below the neutral axis. 

The asymmetric composite rod (with the fibres 
uppermost) was fixed at one end and the free end 
progressively loaded. From measurements of the de- 
flection of the free end of the cantilever, using the 
theory of two-component materials E4], the tensile 
modulus of the fibre may be determined. The rod was 
then inverted and the procedure repeated. In this way 
the compressive modulus of the fibres could also be 
found. 

2. General theory  
Consider a composite rod of two materials 1 and 
2 (Fig la). Assuming that (a) no slippage takes place 
between the two materials and (b) the cross-section 
remains planar during bending, the theory of solid 
beams will apply. Thus the strain on the longitudinally 
arranged fibres will be proportional to their distance 
from the neutral axis. Moreover, for any bending 
curvature, 1/9, within the elastic range of the material, 
the normal stress in material 1, at a distance y from the 

neutral axis is given by 

Ely  
9 - (1) 

P 

If an element has a cross-sectional area ofdA = bdy 
then the force acting is given by 

df~ = Ea bydy  (2) 
P 

where dy is the thickness of the element and E1 is the 
modulus of elasticity of material 1. Similarly, for an 
elemental area of material 2, the force acting is given 
by 

df2 = --E2bydy (3) 
P 

where Ez is the modulus of elasticity of material 2. In 
pure bending, these elemental forces (dft  and df2) 
summed over the total areas of materials 1 and 2, 
respectively, must have a net resultant force equal to 
zero, and the sum of their moments about the neutral 
axis must be equal to the moment of resistance de- 
veloped by the section. Without actually making these 
summations, the results will be unchanged if Equation 
2 is written in the equivalent form 

d f ,  - E 2 ( ~ b )  (4) 

Equation 4 shows that we may regard the portion of 
material 1, of width b, as equivalent to a beam of 
material 2 with reduced width d = (Et/Ez)b for the 
case (El < E2) as shown in Fig. lb. Under a given 
load, the composite section in Fig. la and the trans- 
formed section in Fig. lb will have the same moment 
of resistance. Hence using the transformed section, the 
problem of bending a beam of two materials is re- 
duced to the bending of a T-section beam of material 
1 only. 

In order to calculate the moduli of one component, 
it is necessary to know the moduli of the second 
component. Spring steel was chosen as the second 
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Figure 1 (a) Real composite section. (b) Transformed composite 
section. 

component primarily because it behaves elastically 
and also its tensile and compressive moduli are con- 
sidered to be identical E5, 6]. 

3. The modulus of spring steel 
The modulus was determined by loading a simple 
cantilever consisting of a spring steel strip fixed at one 
end and measuring the deflection, 8, at the loading 
point. The plot of load versus deflection was a straight 
line through the origin. From the slope of the line the 
rigidity, R, of the spring steel strip was calculated and 
then the elastic modulus, E~, was determined using the 
classical equation 

p L  ~ 
R = E , I  - (5) 

38 

where P is the load, L is the length of the steel strip 
(99.3 mm) and I is the moment of inertia which is 
given by 

bh 3 
I - (6) 

12 

where b is the width of the steel strip (12.9 ram) and h is 
the depth of the steel strip (0.65 ram). A value of 181.4 
GPa was calculated for the modulus of the spring steel 
with a possible error of + 6%. 

4. The moduli of perspex 
Having determined the modulus of spring steel it is 
now possible to determine the two moduli for the 
other component of an asymmetric composite. In this 
case perspex was chosen because loading tests over the 
required range showed it to be elastic with little or no 
creep. 

4.1. T h e o r y  
Consider a rectangular cross-section composite rod of 
spring steel and perspex. 

4. 1. 1. C a s e  A ,  p e r s p e x  u p p e r m o s t  
Fig. 2 shows (a) the cross-section of the real composite 
rod and (b) The transformed section, where a is the 
depth of the spring steel, b the width of the rod, h the 
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Figure 2 Perspex in tension. (a) Real section, (b) transformed sec- 
tion. 

depth of the perspex, Es the modulus of the spring 
steel, Ept the modulus of the perspex in tension, 
k = EJEpt .  

Generally the distance of the neutral axis from 
a given parallel axis is given by 

where Ai is the 
distance of the 
measuring axis. 

• y iA i  
g _ i=1 (7) 

i = 1  

area of the element, i, and Yl is the 
centroid of the element i from the 

The distance between the neutral axis and top of the 
perspex, Yt (Fig. 2b) is found to be 

h2/2 + ak (h  + a/2) 
y, = (8) 

h + a k  

The moment of inertia about the neutral axis of the 
transformed section (Fig. 2b) is given by [4] 

bh 3 da 3 
I, = 3 + ~ -  - [(bh + da)(y t  - h) 2] (9) 

Because the aim of this experiment is to calculate 
the moduli of the perspex in tension and in compres- 
sion, the entire perspex region of the composite must 
be on one side of the neutral axis (i.e. the neutral axis 
must not intersect the perspex region). 

Using the composite rod as a simple cantilever of 
length, L, and measuring the deflection at the end of 
the rod, 8, under load, P, allows calculation of rigidity, 
Rt. In the case of perspex uppermost (perspex in ten- 
sion) 

pL 3 
Rt = Evtl t  - 38 (10) 

where gpt is the tensile modulus of perspex. 
In Equations 8 and 9, the values of Yt and It are 

a function of k = Ept /E s. A numerical solution using 
a computer program allows calculation of Ept. The 
program assigns an initial value for k and then in- 
crements it. At each increment, the value of Q is 
calculated 

Q = R t -  Eptlt (11) 

when Q is zero the value of Ept can  be determined. 

4. 1.2. Case B, perspex innermost 
In this case the perspex is under compression. Fig. 3 
shows (a) the real cross-section of the rod and (b) the 
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Figure 3 Perspex m compression. (a) Real section, (b) transformed 
section. 

4.3. Results 
Fig. 4 shows the plots of load, P, against deflection, ~, 
for both cases. The data points fall on straight lines 
through the origin. Moreover it is clear that the slopes 
for the two cases are slightly different, indicating that 
perspex has indeed slightly different moduli in tension 
and compression. From the two rigidities and using 
the theory described previously, the values of 2.79 and 
2.93 G P a  were calculated for the moduli of the 
perspex in tension, Ept , and compression, Epc , res- 
pectively. 
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Figure 4 The perspex-steel composite test. (D) Tension, (~) com- 
pression. 

transformed section where Epc is the modulus of the 
perspex in compression and Yc is the distance between 
the neutral axis and the bottom of the perspex 
(Fig. 3b). Similar experimental procedures and numer- 
ical solutions as described in case A yield the modulus 
of perspex in compression Epc. 

4 . 2 .  E x p e r i m e n t a l  p r o c e d u r e  

Strips of perspex and spring steel having rectangular 
cross-sections of 12.gmm x 3.0 mm and 12.9 mm x 
0.65 mm respectively, were bonded together using 
acrylic resin to ensure that no slippage takes place 
during bending. After curing the resin, the composite 
rod was held in a vice and the length of the cantilever 
(119.1 ram) measured using a travelling microscope. 
Cantilever loading-deflection experiments were then 
carried out for two cases, i.e. perspex uppermost (per- 
spex in tension) and perspex innermost (perspex in 
compression). 

5. Tensile and compressive moduli 
of the fibres 

5.1. Theory 
Consider now a composite in the form of a perspex 
rod containing a slot filled with fibres as shown in 
Fig. 5a. Ept and Ev~ refer to the tensile and compres- 
sive moduli of the perspex, respectively. Est is the 
modulus of the fibre in tension, Es~ is the modulus of 
the fibres in compression and f is the depth of the 
fibres in the slot. Providing that the fibres remain the 
same vertical distance from the neutral axis, then 
theoretically the moment of inertia of the composite 
will remain constant even if the fibres move laterally in 
the slot. Thus the cross-section of the fibre region can 
be considered as a solid rectangle of he ight fand  width 
z (Fig. 5b) where 

z = A / f  (12) 

and A = total cross-sectional area of the fibres. 
The remaining very small area of the slot contains 

the acrylic bonding resin which is assumed to have the 
same modulus as perspex. 

5. 1. 1. Case A, s lot  uppe rmos t  conta in ing 
f ibres 

During bending, the uppermost region of the com- 
posite is under tension. Consider Fig. 5a (cross-section 
of a two component rod), where b is the width of the 
perspex rod, h is the depth of the slot, w is the width of 
the slot ,f  is the depth of the fibres, and a is the depth of 
the perspex rod. 

m = h - f  (13) 

c = (b - w ) E p t / E s t  (14) 
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Figure 5 Fibres in tension. (a) Real section, (b) intermediate trans- 
formed section, (c) final transformed section with respect to Est. 
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e = z + (b - z )Ept /E f t  (15) 

g = bEpt/Eyt (16) 

(when the slot is completely filled with resin then 
c = g) 

d = b E p c / E f t  (17) 

The distance of the neutral axis from the top of the 
composite is given by 

b 

i - W ~  

I b I 

(a) (b) 

~-d~ 

aT-yo g 

yc 
�9 J _ ~ ~ m  

I ~ - - - e - ~  I ~ 
(c) 

Figure 6 Fibres in compression. (a) Real section, (b) intermediate 
transformed section, (c) final transformed section with respect to Eft. 

mc(m/2) + e f [ m  + (f/2)] + g(Yt - h) [h + (Yt - -  h)/2] + d(a - Yt) [Yt -}- (a - yt)/2] 
Yt = me + e f +  9(Yt  - h) + d(a - Yt) 

(18) 

Simplifying gives 

(g - d)y2t + 2(mc + e f -  9h + da) yt 

- ( c m  2 + 2e fm + e f  2 - g h  2 + da 2 ) = 0  (19) 

From the above quadratic equation, Yt can be deter- 
mined. 

The moment of inertia of the transformed section 
(Fig. 5c) is 

c m  3 ~__ . gs 3 d(a -- yt) 3 

I f t  -- 12 + _ _  + ~ -  + 3 

+ cm(yt -- m/2) a + e f ( s  +f/2)  2 (20) 

where s = Yt - h 
As the aim of this experiment is to determine the 

moduli of the fibres in compression and tension, the 

the fibre in compression, and I ~  is the moment of 
inertia of the transformed section and y~ is the dis- 
tance of the neutral axis from the top of the slot 
(Fig. 6a, b, and c). 

The final transformed section in this case is shown 
in Fig. 6c. It can be shown that in this case 

m = h - f  (22) 

c = ( b - w ) E p c / E f c  (23) 

e = z + (b - z) Ep~/Efo (24) 

g = bEpc/Efc (25) 

when the slot is completely filled with resin then c = g 

d = bEpt /Efc  (26) 

Yc 
mc(m/2) + e f [ m  + (f/2)] + g(Y~ - h) [h + (yr - h)/2] + d(a - y~) [yo + (a - yr 

mc + e f  + g(yo - h) + d(a - yc) 
(27) 

entire fibre region of the composite must be on one 
side of the neutral axis (i.e. the neutral axis must not 
intersect the fibre region). 

The composite rod was fixed at one end and the 
other end was loaded and the rigidity, Rt, calculated as 
shown previously. 

As can be seen from Equation 20, I f t  is a function of 
Eft. A numerical solution using a computer program 
allows calculation of Eft .  The program assigns a pro- 
visional E f t  value and then increments it. At each 
increment, Q is calculated 

Q = R t -  Ey t Iy t  (21) 

where R, is the rigidity from the cantilever experiment, 
Izt the moment of inertia from Equations 19 and 20, 
and E f t  the tensile modulus of the fibre. When Q is 
zero the real value of E f t  c a n  be determined. 

5. 1.2. Case B, s lo t  i n n e r m o s t  con ta in ing  
f ibres 

In this case, bending of the composite rod causes the 
fibres to be compressed. Eye refers to the modulus of 
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where Yc is the distance of the neutral axis of the 
transformed section (Fig. 6c) from the top of the slot. 
Simplifying Equation 27 gives 

(g - d )Y  2 + 2(mc + e f  - gh + da)yc 

- ( c m  2 + 2 e f m + e f  2 - g h  z + d a  2 ) = 0  (28) 

From the above quadratic equation yr can be deter- 
mined. 

The moment of inertia If~, of the transformed sec- 
tion (Fig. 6c) is found to be 

cm 3 e f  3 gs a d(a - yo)3 
Ire - 12 + ~ - + ~ - - +  3 

+ cm(yc -- m/2) 2 + ef(s  +f/2)  2 (29) 

where s = yo - h. 
Similar numerical calculations and similar experi- 

mental procedures as described in Case A yields the 
modulus of the fibre in compression, Eye. 



FtW 
A - (30) 

19 

600 

where A is the total fibre cross-sectional area, 1 is the 
length of the tow, n is the number of tows, w is the 
weight of one tow, and 9 is the density (1450 kg m -  3). 

5.3. Results 
The plots of load, P versus deflection, 5, for Kevlar 49 
(spool 1), Kevlar 29 and Technora are shown in Figs. 
7, 8 and 9, respecively. In the case of fibres uppermost 
in the bent composite rods, all  will be under tension 
and, as can be seen, the data points form straight lines 
through the origin with very high coefficients of 
regression. 

In the case of Kevlar 49 fibres innermost in the bent 
rod, the data points are initially in a straight line, but 
then tend to deviate. This effect is to be expected when 
the fibres under compression undergo a transition 
from elastic to plastic deformation. The transition 
point in compression corresponds to a strain of ap- 
proximately 0.2%. In the case of Kevlar 29 and Tech- 
nora the applied loads did not permit attainment of 
the critical strain. 

The slopes of the straight regions of the graphs give 
the values of rigidity (Rt and Re) for both cases. From 
the rigidity values and using the theory described 
previously, the average values of the moduli of the 
fibres in tension, Eft, and in compression Efr for three 
types of fibres were calculated. The results are shown 
in Table I. 

Using the computer program, the values of y, and 
yo were calculated for each experiment. It was estab- 
lished that in all cases the fibres were either completely 
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Figure 7 T h e  K e v l a r  49 ( spoo l  1 ) - P e r s p e x  c o m p o s i t e  test. ([~) Ten-  
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5.2. Exper imenta l  procedure 
Experiments were carried out on three types of aramid 
fibres, Kevlar 49 (spool 1), Kevlar 29 and Technora. 
Individual perspex rods ( ~ 200 mm x 6 mm x 8 mm) 
were milled along one face to produce a slot of rectan- 
gular cross-section ( ~ 200 mm x 2 m m x  2 mm). The 
slot in the perspex was then filled with fibre as follows. 
A tow of fibres was placed linearly in a paper tray and 
covered with a two component acrylic resin using an 
adhesive gun fitted with a mixing nozzle. After thor- 
ough impregnation, the tow was transferred to the slot 
in the perspex rod and held taut. Further plies of the 
same tow were placed in the slot in the same way. The 
adhesive set in about 10 min and the assembly (per- 
spex + fibres) left for 3 days at room temperature to 
harden fully. Composite rods were produced for each 
fibre type. The dimension of the rods together with the 
fibre depths (see Fig. 6c) were measured using a travel- 
ling microscope. 

One end of a composite rod was fixed firmly in 
a vice to form a simple cantilever. The cantilever was 
then progressively loaded and at each stage the deflec- 
tion of the rod at the loading point was measured. The 
cantilever tests were carried out for the two cases, i.e. 
fibre uppermost (tension) and fibre innermost (com- 
pression). 

The total fibre cross-sectional areas were also re- 
quired. These were calculated by weighing known 
lengths of tow and using the equation 

Figure 8 The Kevlar 29 Perspex composite test. ([~) Tension, (~) 
compression. 
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TABLE I Mechanical data 

Instron tensile Average Eft Average Efe Efc/Eft 
modulus (GPa) (GPa) (GPa) (%) 

Kevlar 49 133 118.2 85.0 71.9 
Kevlar 29 77 68.8 64.7 94.4 
Technora 102 98.7 89.9 90.2 
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method to measure the stress-strain property of the 
fibres in longitudinal compression have reached a sim- 
ilar conclusion. The difference between the tensile and 
compressive moduli is much higher in the case of 
Kevlar 49 than in the Kevlar 29 and Technora. 

The calculated values of tensile moduli from the 
composite experiments are slightly lower than the 
tensile moduli obtained in the Instron tests of the 
single fibres. One possible reason for this may be due 
to the large number of fibres in a tow, some of which 
will not be perfectly aligned within the composite. In 
this case there would be unequal load sharing leading 
to a lower value for the modulus. 

0 ~  
0 1 2 3 4 5 6 7 8 9 

Deflection (mm) 

Figure 9 The Technora-Perspex composite test. ([2]) Tension, (~) 
compression. 

above (tension) or completely below (compression) the 
neutral axis. 

6. Conclusion 
The perspex deforms elastically within the loading 
conditions (it returns to its initial form after unload- 
ing) and the compressive modulus of the perspex is 
slightly higher than the tensile modulus. 

The results of the bending of perspex + fibre assem- 
blies show that the aramid fibres generally have 
a lower modulus in compression than in tension. Re- 
cently other workers [7] using a micro-composite 
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